ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Акопян А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 115902

Темы:   [ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC  AB – BC = .  Пусть M – середина стороны AC, а BN – биссектриса.  Докажите, что  ∠BMC + ∠BNC = 90°.

Прислать комментарий     Решение

Задача 116745

Темы:   [ Правильный (равносторонний) треугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Углы между биссектрисами ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116751

Темы:   [ Ортоцентр и ортотреугольник ]
[ Подобие ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.

Прислать комментарий     Решение

Задача 64637

Темы:   [ Тетраэдр (прочее) ]
[ Трехгранные и многогранные углы (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 10,11

Плоскость α пересекает рёбра AB, BC, CD и DA треугольной пирамиды ABCD в точках K, L, M и N соответственно. Оказалось, что двугранные углы
∠(KLA, KLM),  ∠(LMB, LMN),  ∠(MNC, MNK)  и  ∠(NKD, NKL)  равны. (Через  ∠(PQR, PQS)  обозначается двугранный угол при ребре PQ в тетраэдре PQRS.) Докажите, что проекции вершин A, B, C и D на плоскость α лежат на одной окружности.

Прислать комментарий     Решение

Задача 65378

Темы:   [ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Подобные треугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

В треугольнике ABC точки A1, B1 и C1 – середины сторон BC, CA и AB соответственно. Точки B2 и C2 – середины отрезков BA1 и CA1 соответственно. Точка B3 симметрична C1 относительно B, а точка C3 симметрична B1 относительно C. Докажите, что одна из точек пересечения описанных окружностей треугольников BB2B3 и CC2C3 лежит на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .