Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Злобин С.А.

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Назаров Ф.

В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.

Вниз   Решение


а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

ВверхВниз   Решение


Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

ВверхВниз   Решение


Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 10]      



Задача 105072

Тема:   [ Тождественные преобразования ]
Сложность: 2
Классы: 7,8,9

Два различных числа x и y (не обязательно целых) таковы, что  x² – 2000x = y² – 2000y.  Найдите сумму чисел x и y.

Прислать комментарий     Решение

Задача 98481

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 10,11

Натуральные числа m и n взаимно просты (не имеют общего делителя, отличного от единицы). Дробь     можно сократить на число d.
Каково наибольшее возможное значение d?

Прислать комментарий     Решение

Задача 105090

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение  НОД(m + 2000n, n + 2000m)?

Прислать комментарий     Решение

Задача 98440

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 7,8,9

Найдите все пары целых чисел  (x, y),  для которых числа  x³ + y  и  x + y³  делятся на  x² + y².

Прислать комментарий     Решение

Задача 105061

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10

Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .