Страница: 1
2 >> [Всего задач: 10]
|
|
Сложность: 2 Классы: 7,8,9
|
Два различных числа x и y (не обязательно целых) таковы, что
x² – 2000x = y² – 2000y. Найдите сумму чисел x и y.
|
|
Сложность: 3 Классы: 10,11
|
Натуральные числа m и n взаимно просты (не имеют общего делителя, отличного от единицы). Дробь можно сократить на число d.
Каково наибольшее возможное значение d?
|
|
Сложность: 3 Классы: 7,8,9
|
Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение НОД(m + 2000n, n + 2000m)?
|
|
Сложность: 3+ Классы: 7,8,9
|
Найдите все пары целых чисел (x, y), для которых числа x³ + y и x + y³ делятся на x² + y².
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите все такие пары натуральных чисел x, y, что числа x³ + y и y³ + x делятся на x² + y².
Страница: 1
2 >> [Всего задач: 10]