ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Баранов Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 8]      



Задача 111683

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 7,8,9

Есть четыре камня, каждый весит целое число граммов. Есть чашечные весы со стрелкой, показывающей, на какой из двух чаш вес больше и на сколько граммов. Можно ли узнать про все камни, сколько какой весит, за четыре взвешивания, если в одном из этих взвешиваний весы могут ошибиться на 1 грамм?

Прислать комментарий     Решение

Задача 116247

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 10,11

В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.

Прислать комментарий     Решение

Задача 111340

Темы:   [ Двоичная система счисления ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 9,10,11

Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке p стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких p Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .