ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Баранов Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 8]      



Задача 111317

Темы:   [ Принцип крайнего (прочее) ]
[ Оценка + пример ]
Сложность: 2
Классы: 5,6,7

Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?
Прислать комментарий     Решение


Задача 116376

Темы:   [ Четность и нечетность ]
[ Принцип крайнего ]
Сложность: 3
Классы: 8,9,10

Гости за круглым столом ели изюм из корзины с 2011 изюминками. Оказалось, что каждый съел либо вдвое больше, либо на 6 меньше изюминок, чем его сосед справа. Докажите, что были съедены не все изюминки.

Прислать комментарий     Решение

Задача 116408

Темы:   [ Связь величины угла с длиной дуги и хорды ]
[ Построения одним циркулем ]
Сложность: 3
Классы: 8,9

Нарисован угол, и ещё имеется только циркуль.
  а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
  б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?

Прислать комментарий     Решение

Задача 64519

Темы:   [ Теория игр (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Соображения непрерывности ]
Сложность: 3+
Классы: 8,9,10

Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?

Прислать комментарий     Решение

Задача 116241

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

Семизначный код, состоящий из семи различных цифр, назовем хорошим. Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .