Страница: 1
2 >> [Всего задач: 6]
На плоскости дана прямая. С помощью пятака постройте две точки какой-нибудь прямой, перпендикулярной данной. Разрешаются такие операции: отметить точку, приложить пятак к ней и обвести его; отметить две точки (на расстоянии меньше диаметра пятака), приложить пятак к ним и обвести его. Нет возможности прикладывать пятак к прямой так, чтобы она его касалась.
Нарисован угол, и еще имеется только циркуль.
а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?
Дан остроугольный треугольник ABC; AA1, BB1 – его высоты. Из точки A1 опустили перпендикуляры на прямые AC и AB, а из точки B1 опустили перпендикуляры на прямые BC и BA. Докажите, что основания перпендикуляров образуют равнобокую трапецию.
|
|
Сложность: 4 Классы: 10,11
|
В треугольнике ABC на стороне AB отметили точку D. Пусть ω1 и Ω1, ω2 и Ω2 – соответственно вписанные и вневписанные (касающиеся AB во внутренней точке) окружности треугольников ACD и BCD. Докажите, что общие внешние касательные к ω1 и ω2, Ω1 и Ω2 пересекаются на прямой AB.
|
|
Сложность: 4+ Классы: 10,11
|
В остроугольном треугольнике ABC O – центр описанной окружности, A1, B1, C1 – основания высот. На прямых OA1, OB1, OC1 нашли такие точки A', B', C' соответственно, что четырёхугольники AOBC', BOCA', COAB' вписанные. Докажите, что описанные окружности треугольников AA1A', BB1B', CC1C', имеют общую точку.
Страница: 1
2 >> [Всего задач: 6]