Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Раскина И.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

Вниз   Решение


Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?

ВверхВниз   Решение


Автор: Яглом И.М.

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.

ВверхВниз   Решение


Автор: Таирова

Отец и сын катаются на коньках по кругу. Время от времени отец обгоняет сына. После того, как сын переменил направление своего движения на противоположное, они стали встречаться в 5 раз чаще. Во сколько раз отец бегает быстрее сына?

ВверхВниз   Решение


В разноцветной семейке было поровну белых, синих и полосатых детей-осьминожков. Когда несколько синих осьминожков стали полосатыми, папа решил посчитать детей. Синих и белых вместе взятых оказалось 10, зато белых и полосатых вместе взятых – 18. Сколько детей в разноцветной семейке?

ВверхВниз   Решение


Изначально на столе лежат три кучки из 100, 101 и 102 камней соответственно. Илья и Костя играют в следующую игру. За один ход каждый из них может взять себе один камень из любой кучи, кроме той, из которой он брал камень на своем предыдущем ходе (при своём первом ходе каждый игрок может брать камень из любой кучки). Ходы игроки делают по очереди, начинает Илья. Проигрывает тот, кто не может сделать ход. Кто из игроков может выиграть, как бы ни играл соперник?

ВверхВниз   Решение


Из бумаги вырезали два одинаковых треугольника ABC и A'B'C' и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков AA', BB' и CC' лежат на одной прямой.

ВверхВниз   Решение


Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177° равна 45. Докажите это.

ВверхВниз   Решение


a, b, c – длины сторон треугольника. Докажите, что  

ВверхВниз   Решение


В трапеции ABCD на боковой стороне AB дана точка K. Через точку A провели прямую l, параллельную прямой KC, а через точку B – прямую m, параллельную прямой KD. Докажите, что точка пересечения прямых l и m лежит на стороне CD.

ВверхВниз   Решение


Про пять положительных чисел известно, что если из суммы любых трёх из них вычесть сумму двух оставшихся, то разность будет положительной. Докажите, что произведение всех десяти таких разностей не превосходит квадрата произведения данных пяти чисел.

ВверхВниз   Решение


Каждый день баран учит одинаковое количество языков. К вечеру своего дня рождения он знал 1000 языков. В первый день того же месяца он знал к вечеру 820 языков, а в последний день этого месяца – 1100 языков. Когда у барана день рождения?

Вверх   Решение

Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 115374

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

В Лесогории живут только эльфы и гномы. Гномы лгут, говоря про своё золото, а в остальных случаях говорят правду. Эльфы лгут, говоря про гномов, а в остальных случаях говорят правду. Однажды два лесогорца сказали:
А: Всё моё золото я украл у Дракона.
Б: Ты лжешь.
Определите, эльфом или гномом является каждый из них.
Прислать комментарий     Решение


Задача 116606

Темы:   [ Прямоугольные параллелепипеды ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7

Торт упакован в коробку с квадратным основанием. Высота коробки вдвое меньше стороны этого квадрата. Ленточкой длины 156 см можно перевязать коробку и сделать бантик сверху (как на рисунке слева). А чтобы перевязать её с точно таким же бантиком сбоку (как на рисунке справа), нужна ленточка длины 178 см. Найдите размеры коробки.

Прислать комментарий     Решение

Задача 66380

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 5,6,7

В разноцветной семейке было поровну белых, синих и полосатых детей-осьминожков. Когда несколько синих осьминожков стали полосатыми, папа решил посчитать детей. Синих и белых вместе взятых оказалось 10, зато белых и полосатых вместе взятых – 18. Сколько детей в разноцветной семейке?

Прислать комментарий     Решение

Задача 66386

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 4,5,6,7

Каждый день баран учит одинаковое количество языков. К вечеру своего дня рождения он знал 1000 языков. В первый день того же месяца он знал к вечеру 820 языков, а в последний день этого месяца – 1100 языков. Когда у барана день рождения?
Прислать комментарий     Решение


Задача 111893

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

У 2009 года есть такое свойство: меняя местами цифры числа 2009, нельзя получить меньшее четырехзначное число (с нуля числа не начинаются). В каком году это свойство впервые повторится снова?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .