ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике $ABC$ угол $A$ равен $120^\circ$. Точка $I$ – центр вписанной окружности, $M$ – середина $BC$. Прямая, проходящая через $M$ и параллельная $AI$, пересекает окружность с диаметром $BC$ в точках $E$ и $F$ (точки $A$ и $E$ лежат в одной полуплоскости относительно прямой $BC$). Прямая, проходящая через $E$ и перпендикулярная $FI$, пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$. Найдите угол $PIQ$. Дано натуральное число n > 6. Рассматриваются натуральные числа, лежащие в промежутке (n(n – 1), n²) и взаимно простые с n(n – 1). |
Страница: 1 [Всего задач: 3]
Дано натуральное число n > 6. Рассматриваются натуральные числа, лежащие в промежутке (n(n – 1), n²) и взаимно простые с n(n – 1).
В треугольнике ABC проведена биссектриса BB1. Перпендикуляр, опущенный из точки B1 на BC, пересекает дугу BC описанной окружности треугольника ABC в точке K. Перпендикуляр опущенный из точки B на AK пересекает AC в точке L. Докажите что точки K, L и середина дуги AC (не содержащей точку B) лежат на одной прямой.
Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников кликой, если все они дружат между собой. Их число называется размером клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке