Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ясинский В.

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?

Вниз   Решение


Найти скорость и длину поезда, если известно, что он проходит мимо неподвижного наблюдателя в течение 7 секунд и затратил 25 секунд, чтобы проехать вдоль платформы длиной в 378 м.

ВверхВниз   Решение


Моторная лодка в 9 часов отправилась вверх по течению реки, и в момент её отправления с лодки был брошен в реку мяч. В 9:15 лодка повернула и поплыла по течению. В котором часу лодка догонит мяч, если известно, что её собственная скорость оставалась неизменной?

ВверхВниз   Решение


Два парома одновременно отходят от противоположных берегов реки и пересекают её перпендикулярно берегам. Скорости паромов постоянны, но не равны. Паромы встречаются на расстоянии 720 м от берега, после чего продолжают движение. На обратном пути они встречаются в 400 м от другого берега. Какова ширина реки?

ВверхВниз   Решение


При каких значениях параметра a сумма квадратов корней уравнения  x2 + 2ax + 2a2 + 4a + 3 = 0  является наибольшей? Чему равна эта сумма? (Корни рассматриваются с учётом кратности.)

ВверхВниз   Решение


В четырёх заданных точках на плоскости расположены прожекторы, каждый из которых может освещать прямой угол. Стороны этих углов могут быть направлены на север, юг, запад или восток. Доказать, что эти прожекторы можно направить так, что они осветят всю плоскость.

ВверхВниз   Решение


Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?

ВверхВниз   Решение


Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из  4n – 2  диагоналей равнялась 1. Можно ли это сделать при
  а)  n = 55?
  б)  n = 1992?

ВверхВниз   Решение


Пусть ABCD – вписанный четырёхугольник. Докажите, что  AC > BD  тогда и только тогда, когда  (AD – BC)(AB – CD) > 0.

ВверхВниз   Решение


Две окружности Ω1 и Ω2 с центрами O1 и O2 касаются внешним образом в точке O. Точки X и Y лежат на Ω1 и Ω2 соответственно так, что лучи O1X и O2Y одинаково направлены. Из точки X проведены касательные к Ω2, а из точки Y – к Ω1. Докажите, что эти четыре прямые касаются одной окружности, проходящей через точку O.

ВверхВниз   Решение


Окружность k проходит через вершины B и C треугольника ABC  (AB > AC)  и пересекает продолжения сторон AB и AC за точки B и C в точках P и Q соответственно. Пусть AA1 – высота треугольника ABC. Известно, что  A1P = A1Q.  Докажите, что угол PA1Q в два раза больше угла A треугольника ABC.

ВверхВниз   Решение


В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.

ВверхВниз   Решение


Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
AQM = ∠BPM.

Вверх   Решение

Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 64401

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+

Окружность k проходит через вершины B и C треугольника ABC  (AB > AC)  и пересекает продолжения сторон AB и AC за точки B и C в точках P и Q соответственно. Пусть AA1 – высота треугольника ABC. Известно, что  A1P = A1Q.  Докажите, что угол PA1Q в два раза больше угла A треугольника ABC.

Прислать комментарий     Решение

Задача 64801

Темы:   [ Касающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10

Две окружности Ω1 и Ω2 с центрами O1 и O2 касаются внешним образом в точке O. Точки X и Y лежат на Ω1 и Ω2 соответственно так, что лучи O1X и O2Y одинаково направлены. Из точки X проведены касательные к Ω2, а из точки Y – к Ω1. Докажите, что эти четыре прямые касаются одной окружности, проходящей через точку O.

Прислать комментарий     Решение

Задача 64804

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 9,10

Пусть ABCD – вписанный четырёхугольник. Докажите, что  AC > BD  тогда и только тогда, когда  (AD – BC)(AB – CD) > 0.

Прислать комментарий     Решение

Задача 65038

Темы:   [ Построения (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10

Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
AQM = ∠BPM.

Прислать комментарий     Решение

Задача 65360

Темы:   [ Трапеции (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Пусть ABCD – трапеция, в которой углы A и B прямые,  AB = AD,  CD = BC + AD,  BC < AD.
Докажите, что угол ADC в два раза больше угла ABE, где E – середина AD.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .