Страница:
<< 24 25 26 27 28
29 30 >> [Всего задач: 149]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Внутри равнобедренного треугольника ABC отмечена точка K так, что AB = BC = CK и ∠KAC = 30°. Найдите угол
AKB.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Биссектриса угла ABC пересекает описанную окружность w треугольника ABC в точках B и L. Точка M – середина отрезка AC. На дуге ABC окружности w выбрана
точка E так, что EM ∥ BL. Прямые AB и BC пересекают
прямую EL в точках P и Q соответственно. Докажите, что
PE = EQ.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Существует ли натуральное число, которое можно представить в виде произведения двух палиндромов более чем 100 способами? (Палиндромом называется натуральное число, которое одинаково читается как слева направо, так и справа налево.)
|
|
Сложность: 4 Классы: 9,10,11
|
Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными?
Страница:
<< 24 25 26 27 28
29 30 >> [Всего задач: 149]