Страница: 1 [Всего задач: 2]
|
|
Сложность: 3 Классы: 7,8,9
|
Маляр-хамелеон ходит по клетчатой доске как хромая ладья (на одну клетку по вертикали или горизонтали). Попав в очередную клетку, он либо перекрашивается в её цвет, либо перекрашивает клетку в свой цвет. Белого маляра-хамелеона кладут на чёрную доску размером 8×8 клеток. Сможет ли он раскрасить её в шахматном порядке?
|
|
Сложность: 4 Классы: 10,11
|
На большой шахматной доске отметили 2n клеток так, что ладья может ходить по всем отмеченным клеткам, не перепрыгивая через неотмеченные.
Докажите, что фигуру из отмеченных клеток можно разрезать на n прямоугольников.
Страница: 1 [Всего задач: 2]