ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.
По кругу выписаны в некотором порядке все натуральные числа от 1 до N ,
N |
Страница: 1 2 >> [Всего задач: 6]
В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?
На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)
Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.). Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.
По кругу выписаны в некотором порядке все натуральные числа от 1 до N ,
N
Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке