Страница: 1 [Всего задач: 2]
|
|
Сложность: 3+ Классы: 9,10,11
|
Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.
|
|
Сложность: 5- Классы: 9,10,11
|
Вписанная окружность
σ треугольника
ABC касается его сторон
BC ,
AC ,
AB в точках
A' ,
B' ,
C' соответственно. Точки
K и
L на окружности
σ таковы, что
AKB'+ BKA'= ALB'+ BLA'=180
o . Докажите, что прямая
KL равноудалена от точек
A' ,
B' ,
C' .
Страница: 1 [Всего задач: 2]