ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Маринов М.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 65049

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Теоремы Чевы и Менелая ]
[ Отношения линейных элементов подобных треугольников ]
[ Решение задач при помощи аффинных преобразований ]
Сложность: 5-
Классы: 10,11

Дан треугольник ABC и прямая l, пересекающая BC, CA и AB в точках A1, B1 и C1 соответственно. Точка A' – середина отрезка, соединяющего проекции A1 на AB и AC. Аналогично определяются точки B' и C'.
  а) Докажите, что A', B' и C' лежат на некоторой прямой l'.
  б) Докажите, что, если l проходит через центр описанной окружности треугольника ABC, то l' проходит через центр его окружности девяти точек.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .