ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||
Страница: 1 [Всего задач: 2]
На стороне AB квадрата ABCD вне его построен равнобедренный треугольник ABE (AE=BE). Пусть M – середина AE, O – точка пересечения AC и BD, K – точка пересечения ED и OM. Докажите, что EK=KO.
Дан остроугольный треугольник ABC. Точки A0 и C0 – середины меньших дуг соответственно BC и AB его описанной окружности. Окружность, проходящая через A0 и C0, пересекает прямые AB и BC в точках P и S, Q и R соответственно (все эти точки различны). Известно, что PQ∥AC. Докажите, что A0P+C0S=C0Q+A0R
Страница: 1 [Всего задач: 2]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке