ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||
Страница: 1 [Всего задач: 1]
Пусть γA, γB, γC – вневписанные окружности треугольника ABC, касающиеся сторон BC, CA, AB соответственно. Обозначим через lA общую внешнюю касательную окружностей γB и γC, отличную от BC. Аналогично определим lB, lC. Из точки P, лежащей на lA, проведем отличную от lA касательную к γB и найдем точку X ее пересечения с lC. Аналогично найдем точку Y пересечения касательной из P к γC с lB. Докажите, что прямая XY касается γA.
Страница: 1 [Всего задач: 1]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке