ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сендеров В.А.

Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 90]      



Задача 64361

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Арифметика остатков (прочее) ]
[ Малая теорема Ферма ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Найдите все такие натуральные k, что произведение первых k нечётных простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей, чем первая).

Прислать комментарий     Решение

Задача 65931

Темы:   [ Метод ГМТ в пространстве ]
[ ГМТ - окружность или дуга окружности ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4
Классы: 10,11

Дан треугольник ABC, все углы которого меньше φ, где  φ < /3.
Докажите, что в пространстве существует точка, из которой все стороны треугольника ABC видны под углом φ.

Прислать комментарий     Решение

Задача 98328

Темы:   [ Произведения и факториалы ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

а) Докажите для всех n > 2 неравенство    

б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех  n > 2  

Прислать комментарий     Решение

Задача 98579

Темы:   [ Рациональные и иррациональные числа ]
[ Целая и дробная части. Принцип Архимеда ]
[ Примеры и контрпримеры. Конструкции ]
[ Арифметика остатков (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 9,10,11

Существуют ли такие иррациональные числа a и b, что  a > 1,  b > 1,  и  [am]  отлично от  [bn]  при любых натуральных числах m и n?

Прислать комментарий     Решение

Задача 107814

Темы:   [ Целочисленные и целозначные многочлены ]
[ Простые числа и их свойства ]
[ Теорема Безу. Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Докажите, что для любого многочлена P(x) степени n с натуральными коэффициентами найдется такое целое число k, что числа  P(k),  P(k + 1),  ...,
P(k + 1996)  будут составными, если
  а)  n = 1;
  б)  n – произвольное натуральное число.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .