ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.
Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$
В треугольнике ABC точка P — центр вписанной окружности, а
точка Q — центр окружности, описанной около треугольника ABC.
Прямая PQ перпендикулярна биссектрисе AP треугольника ABC.
Известно, что величина угла PAQ равна
Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые AM и AN делят диагональ BD на три равные части. Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы? Сумма четырех единичных векторов равна нулю. Докажите, что их
можно разбить на две пары противоположных векторов.
В четырёхугольнике ABCD углы A и C – прямые. На сторонах AB и CD как на диаметрах построены окружности, пересекающиеся в точках X и Y. Докажите, что прямая XY проходит через середину K диагонали AC |
Страница: << 1 2 3 [Всего задач: 12]
Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
Все коэффициенты многочлена P(x) – целые числа. Известно, что P(1) = 1 и что P(n) = 0 при некотором натуральном n. Найдите n.
Страница: << 1 2 3 [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке