ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]
Решите неравенство:
Верно ли, что если b > a + c > 0, то квадратное уравнение ax² + bx + c = 0 имеет два корня?
Окружность проходит через вершины В и D параллелограмма АВСD и пересекает его стороны АВ, ВС, СD и DA в точках M, N, P и K соответственно. Докажите, что MK || NP.
Известно, что
Решите уравнение: (x + 2010)(x + 2011)(x + 2012) = (x + 2011)(x + 2012)(x + 2013).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке