Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC на продолжении основания BC за точку C взята точка D. Докажите, что угол ABC больше угла ADC.

Вниз   Решение


              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

ВверхВниз   Решение


Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 6702]      



Задача 54071

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллелограммы ]
Сложность: 3-
Классы: 8,9

Точки M и N — середины противоположных сторон сторон BC и AD параллелограмма ABCD. Докажите, что четырёхугольник AMCN — параллеллограмм.

Прислать комментарий     Решение


Задача 54122

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3-
Классы: 8,9

Стороны треугольника равны a и b. Через середину третьей стороны проведены прямые, параллельные двум другим сторонам. Найдите периметр полученного четырёхугольника.

Прислать комментарий     Решение


Задача 54191

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.

Прислать комментарий     Решение

Задача 54518

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 3-
Классы: 8,9

Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

Прислать комментарий     Решение


Задача 54694

Темы:   [ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Гипотенуза AB прямоугольного треугольника ABC равна 9, катет BC равен 3. На гипотенузе взята точка M, причём AM : MB = 1 : 2. Найдите CM.

Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .