ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каким может быть произведение нескольких различных простых чисел, если оно кратно каждому из них, уменьшенному на 1?
Найдите все возможные значения этого произведения.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 61296  (#09.045)

Тема:   [ Итерации ]
Сложность: 4
Классы: 8,9,10,11

Имеются два сосуда. В них разлили 1 л воды. Из первого сосуда переливают половину воды во второй, затем из второго переливают половину оказавшейся в нем воды в первый, затем из первого сосуда переливают половину оказавшейся в нем воды во второй и т. д. Докажите, что независимо от того, сколько воды было сначала в каждом из сосудов, после 100 переливаний в них будет $ {\frac{2}{3}}$ л и $ {\frac{1}{3}}$ л с точностью до 1 миллилитра.

Прислать комментарий     Решение

Задача 61297  (#09.046)

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 10,11

Вавилонский алгоритм вычисления $ \sqrt{2}$. Последовательность чисел {xn} задана условиями:

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{2}{x_n}}\right.$xn + $\displaystyle {\frac{2}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{2}{x_n}}\right)$        (n $\displaystyle \geqslant$ 1).

Докажите, что $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{2}$.

Прислать комментарий     Решение

Задача 61298  (#09.047)

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 10,11

К чему будет стремиться последовательность из предыдущей задачи 9.46, если в качестве начального условия выбрать x1 = - 1?

Прислать комментарий     Решение

Задача 61299  (#09.048)

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 10,11

Итерационная формула Герона. Докажите, что последовательность чисел {xn}, заданная условиями

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{k}{x_n}}\right.$xn + $\displaystyle {\frac{k}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{k}{x_n}}\right)$,

сходится. Найдите предел этой последовательности.

Прислать комментарий     Решение

Задача 61300  (#09.049)

Тема:   [ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Пусть a и k > 0 произвольные числа. Определим последовательность {an} равенствами

a0 = a,        an + 1 = $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{a_n+\frac{k}{a_n}}\right.$an + $\displaystyle {\frac{k}{a_n}}$$\displaystyle \left.\vphantom{a_n+\frac{k}{a_n}}\right)$    (n $\displaystyle \geqslant$ 0).

Докажите, что при любом неотрицательном n выполняется равенство

$\displaystyle {\frac{a_n-\sqrt k}{a_n+\sqrt k}}$ = $\displaystyle \left(\vphantom{\frac{a-\sqrt k}{a+\sqrt
k}}\right.$$\displaystyle {\frac{a-\sqrt k}{a+\sqrt
k}}$$\displaystyle \left.\vphantom{\frac{a-\sqrt k}{a+\sqrt
k}}\right)^{2^n}_{}$.


Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .