ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками). Докажите, что можно побывать во всех городах, совершив не более  а) 198 перёлетов;  б) 196 перелётов.

Вниз   Решение


Задан набор из N слов, из которых требуется составить связный кроссворд. Слова в кроссворде должны располагаться либо вертикально, либо горизонтально, причем каждое слово, записанное по вертикали, должно пересекаться с каждым словом, записанным по горизонтали. Слова, записанные в одном направлении, отделяются друг от друга как минимум одним пустым рядом. Каждое слово в кроссворде должно встречаться в точности столько раз, сколько раз оно присутствует в наборе.

Входные данные

Первая строка входного файла содержит целое число N – количество слов в наборе (1 ≤ N ≤ 9). В каждой из N последующих строк содержится по одному слову (некоторые из них могут повторяться). Слово представляет собой последовательность не более чем из 20 русских и/или английских букв.

Выходные данные

В выходной файл выведите один из возможных вариантов составления кроссворда, либо сообщение «NO SOLUTION», если кроссворд, удовлетворяющий условию задачи, составить невозможно.

Пример входного файла

СБОРЫ
СОН
ПОТОП
АНТОН

Пример выходного файла

П
СБОРЫ
О Т
АНТОН
П

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 31362  (#18)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8,9

Некто А загадал число от 1 до 15. Некто В задает вопросы на которые можно отвечать ``да" или ``нет". Может ли В отгадать число, задав a) 4 вопроса; б) 3 вопроса.
Прислать комментарий     Решение


Задача 31363  (#19)

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Доказать, что их можно разбить на пары, в каждой из которых имеется общий язык.
б) То же для группы из 100 человек.
в) То же для группы из 102 человек.

Прислать комментарий     Решение

Задача 31364  (#20)

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 6,7,8

12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды А, В, С, что А выиграла у В, В выиграла у С, а С – у А.

Прислать комментарий     Решение

Задача 31365  (#21)

Тема:   [ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8

Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?

Прислать комментарий     Решение


Задача 31366  (#22)

Тема:   [ Соображения непрерывности ]
Сложность: 3-
Классы: 5,6,7,8

Матч между двумя футбольными командами закончился со счетом 8:5. Доказать, что был момент, когда первая команда забила столько же мячей, сколько второй оставалось забить.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .