ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан выпуклый пятиугольник, все углы которого тупые. Докажите, что в нем найдутся две такие диагонали, что круги, построенные на них как на диаметрах, полностью покроют весь пятиугольник.

Вниз   Решение


Из 54 одинаковых единичных картонных квадратов сделали незамкнутую цепочку, соединив их шарнирно вершинами. Каждый квадрат (кроме крайних) соединён с соседями двумя противоположными вершинами. Можно ли этой цепочкой квадратов полностью закрыть поверхность куба 3×3×3?

ВверхВниз   Решение


Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.

ВверхВниз   Решение


Найдите корень уравнения 21-3x = 16 .

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 86494  (#4.2)

Темы:   [ Периметр треугольника ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8

Отрезки АС и BD пересекаются в точке О. Периметр треугольника АВС равен периметру треугольника АВD, а периметр треугольника ACD равен периметру треугольника BCD. Найдите длину АО, если ВО = 10 см.

Прислать комментарий     Решение

Задача 86495  (#4.3)

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 7,8

Какое наибольшее количество прямоугольников 4*1 можно разместить в квадрате 6*6 (не нарушая границ клеток)?
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .