ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Рожкова М.

В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что  ∠A = 2∠B  тогда и только тогда, когда  AC = 2MD.

Вниз   Решение


Треугольник A1B1C1 получен из треугольника ABC поворотом на угол $ \alpha$ ($ \alpha$ < 180o) вокруг центра его описанной окружности. Докажите, что точки пересечения сторон AB и A1B1, BC и B1C1, CA и C1A1 (или их продолжений) являются вершинами треугольника, подобного треугольнику ABC.

Вверх   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 6702]      



Задача 53340

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Даны два треугольника: ABC и A1B1C1. Известно, что  AB = A1B1AC = A1C1,  ∠A = ∠A1.  На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что  AK = A1K1LC = L1C1.  Докажите, что  KL = K1L1  и  AL = A1L1.

Прислать комментарий     Решение

Задача 53372

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC и углом при вершине B, равным 36°, проведена биссектриса AD.
Докажите, что треугольники CDA и ADB равнобедренные.

Прислать комментарий     Решение

Задача 53373

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
  а)  ∠A = 50°,  ∠B = 100°;
  б)  ∠A = α,  ∠B = β;
  в)  ∠C = 130°;
  г)  ∠C = γ.

Прислать комментарий     Решение

Задача 53376

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 2+
Классы: 8,9

Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если  ∠A = 70°,  ∠C = 80°.

Прислать комментарий     Решение

Задача 53379

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC, равным 37, внешний угол при вершине B равен 60°.
Найдите расстояние от вершины C до прямой AB.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .