ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям: Прямая, пересекающая основание равнобедренного треугольника и проходящая через вершину, разбивает этот треугольник на два треугольника.
На стороне AB треугольника ABC взяты точки M и N, причём AM : MN : NB = 2 : 2 : 1, а на стороне AC — точка K, причём AK : KC = 1 : 2. Найдите площадь треугольника MNK, если площадь треугольника ABC равна 1.
|
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 559]
Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?
Целые числа a и b таковы, что 56a = 65b. Докажите, что a + b – составное число.
Решите в натуральных числах уравнение:
Решите в целых числах уравнение: x³ + x² + x – 3 = 0.
Докажите, что для любых натуральных чисел a и b верно равенство НОД(a, b)НОК(a, b) = ab.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке