ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На лицевой стороне каждой из $6$ карточек Аня написала черным или красным фломастером по натуральному числу. При этом каждым цветом Аня написала хотя бы два числа.

Затем Боря взял каждую карточку, посмотрел, каким цветом на ней написано число, перемножил все Анины числа того же цвета на других карточках и записал результат на обороте карточки (если другая карточка того же цвета всего одна, то Боря пишет число с этой одной карточки).

Мы видим обороты, на которых написаны числа $18$, $23$, $42$, $42$, $47$, $63$. А что написано на лицевых сторонах этих карточек?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 56793

Тема:   [ Площадь четырехугольника ]
Сложность: 3
Классы: 9

Диагонали четырехугольника ABCD пересекаются в точке P. Расстояния от точек A, B и P до прямой CD равны a, b и p. Докажите, что площадь четырехугольника ABCD равна  ab . CD/2p.
Прислать комментарий     Решение


Задача 56794

Тема:   [ Площадь четырехугольника ]
Сложность: 4
Классы: 9

Четырехугольник ABCD вписан в окружность радиуса R$ \varphi$ — угол между его диагоналями. Докажите, что площадь S четырехугольника ABCD равна  2R2sin A sin B sin$ \varphi$.
Прислать комментарий     Решение


Задача 56795

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

Докажите, что площадь четырехугольника, диагонали которого не перпендикулярны, равна  tg$ \varphi$ . | a2 + c2 - b2 - d2|/4, где a, b, c и d — длины последовательных сторон, $ \varphi$ — угол между диагоналями.
Прислать комментарий     Решение


Задача 56796

Тема:   [ Площадь четырехугольника ]
Сложность: 6
Классы: 9

а) Докажите, что площадь выпуклого четырехугольника ABCD вычисляется по формуле

S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),

где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то  S2 = (p - a)(p - b)(p - c)(p - d ).
в) Докажите, что если четырехугольник ABCD описанный, то  S2 = abcd sin2((B + D)/2).
Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .