Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
  а) Докажите, что число её членов меньше 100.
  б) Приведите пример такой прогрессии с 72 членами.
  в) Докажите, что число членов всякой такой прогрессии не больше 72.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78029  (#1)

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

2n = 10a + b.  Доказать, что если  n > 3,  то ab делится на 6.  (n, a и b – целые числа,  b < 10.)

Прислать комментарий     Решение

Задача 78030  (#2)

Темы:   [ ГМТ с ненулевой площадью ]
[ Четырехугольники ]
Сложность: 3
Классы: 9

Дан четырехугольник ABCD. На стороне AB взята точка K, на стороне BC &8212; точка L, на стороне CD — точка M и на стороне AD — точка N, так, что KB = BL = a, MD = DN = b. Пусть KL $ \nparallel$ MN. Найти геометрическое место точек пересечения прямых KL и MN при изменении a и b.
Прислать комментарий     Решение


Задача 78031  (#3)

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9

Квадратная таблица из 49 клеток заполнена числами от 1 до 7 так, что в каждом столбце и в каждой строке встречаются все эти числа. Докажите, что если таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встречаются все эти числа.

Прислать комментарий     Решение

Задача 78032  (#4)

Тема:   [ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3
Классы: 9

Какие выпуклые фигуры могут содержать прямую?
Прислать комментарий     Решение


Задача 78033  (#5)

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9

На окружности даны четыре точки A, B, C, D. Через каждую пару соседних точек проведена окружность. Вторые точки пересечения соседних окружностей обозначим через A1, B1, C1, D1. (Некоторые из них могут совпадать с прежними.) Доказать, что A1, B1, C1, D1 лежат на одной окружности.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .