Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



Задача 97913

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Раскраски ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 7,8,9

Каждая клетка шахматной доски закрашена в один из цветов – синий или красный. Докажите, что клетки одного из цветов обладают тем свойством, что их может обойти шахматный ферзь (на клетках этого цвета ферзь может побывать не один раз, на клетки другого цвета он не ставится, но может через них перепрыгивать).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .