|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Имеются две страны: Обычная и Зазеркалье. У каждого города в Обычной стране есть "двойник" в Зазеркалье, и наоборот. Однако если в Обычной стране какие-то два города соединены железной дорогой, то в Зазеркалье эти города не соединены, а каждые два несоединённых в Обычной стране города обязательно соединены железной дорогой в Зазеркалье. В Обычной стране девочка Алиса не может проехать из города A в город B, сделав менее двух пересадок. Доказать, что Алиса в Зазеркалье сможет проехать из любого города в любой другой, сделав не более двух пересадок. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что ∠A = 2∠B тогда и только тогда, когда AC = 2MD.
Вписанный n-угольник (n > 3) разбит непересекающимися (во внутренних точках) диагоналями на треугольники. Каждый из получившихся треугольников подобен хотя бы одному из остальных. При каких n возможна описанная ситуация?
Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что ∠YB1Z = ∠XB1Z.
Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.
На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что A1C1 || AC.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|