Страница: 1
2 >> [Всего задач: 8]
Задача
116911
(#10.1)
|
|
Сложность: 3 Классы: 9,10
|
При каких n можно оклеить в один слой поверхность клетчатого куба
n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?
Задача
116912
(#10.2)
|
|
Сложность: 4 Классы: 9,10
|
Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.
Задача
116913
(#10.3)
|
|
Сложность: 5- Классы: 9,10
|
Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что MI = r/3 тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.
Задача
116914
(#10.4)
|
|
Сложность: 4+ Классы: 9,10
|
Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.
Задача
116915
(#10.5)
|
|
Сложность: 3+ Классы: 9,10
|
В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.
Страница: 1
2 >> [Всего задач: 8]