Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

  а) Пусть m0 и m1 – целые числа,  0 < m1m0.  Докажите, что при некотором  k > 1  существуют такие целые числа a0, a1, ..., ak и m2, ..., mk, что
m1 > m2 > m3 > ... > mk > 0,  ak > 1,
  m0 = m1a0 + m2,
  m1 = m2a1 + m3,
  m2 = m3a2 + m4,
    ...
  mk–2 = mk–1ak–1 + mk,
  mk–1 = mkak,
и  (m0, m1) = mk.

  б) Докажите, что для любого s от  k – 1  до 0 существуют такие числа us, vs, что   msus + ms+1vs = d,   где  d = (m0, m1).
  В частности, для некоторых u и v выполняется равенство  m0u + m1v = d.

Вниз   Решение


На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 86105  (#6)

Темы:   [ Теория игр (прочее) ]
[ Теория графов (прочее) ]
[ Необычные конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 8,9,10

На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .