ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри квадрата отмечено 100 точек. Квадрат разбит на треугольники таким образом, что вершинами треугольников являются только отмеченные 100 точек и вершины квадрата, причём для каждого треугольника разбиения каждая отмеченная точка либо лежит вне этого треугольника, либо является его вершиной (разбиения такого типа называются триангуляциями). Найдите число треугольников разбиения.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 32035  (#01)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 2+
Классы: 5,6,7

9 кг ирисок стоят дешевле 10 рублей, а 10 кг тех же ирисок – дороже 11 рублей. Сколько стоит 1 кг этих ирисок?

Прислать комментарий     Решение

Задача 32036  (#02)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Куб ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7,8

Петя написал на гранях кубика натуральные числа от 1 до 6. Вася кубика не видел, но утверждает, что

а) у этого кубика есть две соседние грани, на которых написаны соседние числа;

б) таких пар соседних граней у кубика не меньше двух.

Прав ли он в обоих случаях? Почему?

Прислать комментарий     Решение


Задача 88245  (#03)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7

Можно ли разлить 50 л бензина по трём бакам так, чтобы в первом баке было на 10 л больше, чем во втором, а после переливания 26 л из первого бака в третий в третьем баке стало бы столько же бензина, сколько во втором?

Прислать комментарий     Решение

Задача 32038  (#04)

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

Прислать комментарий     Решение

Задача 32039  (#05)

Темы:   [ Обходы многогранников ]
[ Четность и нечетность ]
[ Куб ]
Сложность: 3+
Классы: 8,9,10

У куба отмечены вершины и центры граней, а также проведены диагонали всех граней.
Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно один раз?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .