ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Бибиков П.

В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 77942

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2+
Классы: 9

Докажите тождество

  (ax + by + cz + du)2 + (bx + cy + dz + au)2 + (cx + dy + az + bu)2 +
  + (dx + ay + bz + cu)2 =
  = (dx + cy + bz + au)2 + (cx + by + az + du)2 + (bx + ay + dz + cu)2 +
  + (ax + dy + cz + bu)2.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .