ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 78215

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Свойства симметрии и центра симметрии ]
[ Доказательство от противного ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Малые шевеления ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 9,10,11

Дан выпуклый многоугольник и точка O внутри него. Любая прямая, проходящая через точку O, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и O — центр симметрии.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .