Страница: 1 [Всего задач: 4]
Задача
97786
(#1)
|
|
Сложность: 4- Классы: 8,9
|
В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.
Задача
97787
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Несколько фишек двух цветов расположены в ряд (встречаются оба цвета). Известно, что фишки, между которыми 10 или 15 фишек, одинаковы.
Какое наибольшее число фишек может быть?
Задача
97788
(#3)
|
|
Сложность: 3 Классы: 8,9
|
Доказать, что уравнение m!·n! = k! имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы.
Задача
35723
(#4)
|
|
Сложность: 4 Классы: 9,10
|
а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?
б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?
Страница: 1 [Всего задач: 4]