ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 391]      



Задача 102802

Темы:   [ Задачи на работу ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3-
Классы: 7,8

48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на одну подкову 5 минут?

Прислать комментарий     Решение

Задача 102804

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 7,8

Докажите, что среди любых 11 чисел найдутся два, разность которых делится на десять.
Прислать комментарий     Решение


Задача 102809

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8

На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54.

Прислать комментарий     Решение

Задача 102857

Тема:   [ Геометрическая прогрессия ]
Сложность: 3-
Классы: 7,8

Найти сумму 1 + 2002 + 20022 + ... + 2002n.
Прислать комментарий     Решение


Задача 102880

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 6,7,8

Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .