Страница:
<< 1 2 [Всего задач: 9]
Задача
108887
(#7.6)
|
|
Сложность: 3 Классы: 8,9
|
KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.
Задача
66070
(#7.7)
|
|
Сложность: 3+ Классы: 6,7
|
Вася задумал двузначное число и сообщил Пете произведение цифр в записи этого числа, а Саше – сумму этих цифр. Между мальчиками состоялся такой диалог:
Петя: "Я угадаю задуманное число с трёх попыток, но двух мне может не хватить".
Саша: "Если так, то мне для этого хватит четырёх попыток, но трёх может не хватить".
Какое число было сообщено Саше?
Задача
66065
(#7.8)
|
|
Сложность: 4- Классы: 6,7
|
В каждой клетке доски размером 5×5 стоит крестик или нолик, причём никакие три крестика не стоят подряд ни по горизонтали, ни по вертикали, ни по диагонали. Какое наибольшее количество крестиков может быть на доске?
Задача
66066
(#7.9)
|
|
Сложность: 4- Классы: 6,7
|
У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)
Страница:
<< 1 2 [Всего задач: 9]