|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Три равных окружности S1 , S2 , S3 попарно касаются друг друга, и вокруг них описана окружность S , которая касается всех трёх. Докажите, что для любой точки M окружности S касательная, проведённая из точки M к одной из трёх окружностей S1 , S2 , S3 , равна сумме касательных, проведённых из точки M к двум другим окружностям. |
Страница: 1 [Всего задач: 1]
Строим новый набор чисел {b0, b1, b2, ...} по следующему правилу: b0 — количество чисел исходного набора, которые больше 0, b1 — количество чисел исходного набора, которые больше 1, b2 — количество чисел исходного набора, которые больше 2, и т.д., пока не пойдут нули. Докажите, что сумма всех чисел исходного набора равна сумме всех чисел нового набора.
Страница: 1 [Всего задач: 1] |
||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|