|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Внутри прямого угла KLM взята точка P. Окружность S1 с центром O1 касается сторон LK и LP угла KLP в точках A и D соответственно, а окружность S2 с центром O2 такого же радиуса касается сторон угла MLP, причём стороны LP – в точке B. Оказалось, что точка O1 лежит на отрезке AB. Пусть C – точка пересечения прямых O2D и KL. Докажите, что BC – биссектриса угла ABD. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
Докажите, что существует бесконечно много простых чисел.
Найдите все простые числа, которые отличаются на 17.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Пусть n > 2. Докажите, что между n и n! есть по крайней мере одно простое число.
Найдите все простые числа p и q, для которых выполняется равенство p² – 2q² = 1.
Страница: 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|