ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Старый калькулятор II. Производная функции ln x при x = 1 равна 1. Отсюда

$\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)}{x}}$ = $\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)-\ln1}{(1+x)-1}}$ = 1.

Воспользуйтесь этим фактом для приближенного вычисления натурального логарифма числа N. Как и в задаче 9.51 , разрешается использовать стандартные арифметические действия и операцию извлечения квадратного корня.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 116540  (#9.1)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Неопределено ]
Сложность: 2+
Классы: 8,9

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Прислать комментарий     Решение

Задача 116555  (#10.1)

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 9,10

Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Прислать комментарий     Решение

Задача 116563  (#11.1)

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 116630  (#9.1)

Тема:   [ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 9,10

Автор: Храбров А.

Приведённый квадратный трёхчлен P(x) таков, что многочлены P(x) и P(P(P(x))) имеют общий корень. Докажите, что  P(0)P(1) = 0.

Прислать комментарий     Решение

Задача 116638  (#10.1)

Темы:   [ Числовые таблицы и их свойства ]
[ Задачи с ограничениями ]
Сложность: 4
Классы: 8,9,10

Автор: Карасев Р.

В каждой клетке таблицы, состоящей из 10 столбцов и n строк, записана цифра. Известно, что для каждой строки A и любых двух столбцов найдётся строка, отличающаяся от A ровно в этих двух столбцах. Докажите, что  n ≥ 512.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .