ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116540  (#9.1)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Неопределено ]
Сложность: 2+
Классы: 8,9

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Прислать комментарий     Решение

Задача 116541  (#9.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 2
Классы: 8,9

Дан равнобедренный треугольник ABC  (AB = AC).  На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.

Прислать комментарий     Решение

Задача 116542  (#9.3)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.

Прислать комментарий     Решение

Задача 116543  (#9.4)

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Даны положительные числа x, y, z. Докажите неравенство   

Прислать комментарий     Решение

Задача 116544  (#9.5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 4)  будет целым.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .