Страница:
<< 160 161 162 163
164 165 166 >> [Всего задач: 7526]
Докажите, что прямые y = k1x + l1 и y = k2x + l2 параллельны тогда и только тогда, когда
k1 = k2 и l1 ≠ l2.
Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты
вершины M параллелограмма ABMC.
|
|
Сложность: 3 Классы: 6,7,8
|
На складе имеется по 200 сапог 41, 42 и 43 размеров, причём среди этих 600 сапог 300 левых и 300 правых.
Докажите, что из них можно составить не менее 100 годных пар обуви.
|
|
Сложность: 3 Классы: 7,8,9
|
Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?
|
|
Сложность: 3 Классы: 6,7,8
|
Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?
Страница:
<< 160 161 162 163
164 165 166 >> [Всего задач: 7526]