ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 60654  (#04.028)

Темы:   [ Простые числа и их свойства ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого простого числа  p > 2  числитель дроби  m/n = 1/1 + 1/2 + ... + 1/p–1  делится на p.

Прислать комментарий     Решение

Задача 60655  (#04.029)

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 8,9,10

Натуральные числа m и n таковы, что  m > nm не делится на n и имеет от деления на n тот же остаток, что и  m + n  от деления на  m – n.
Найдите отношение  m : n.

Прислать комментарий     Решение

Задача 30381  (#04.030)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

Прислать комментарий     Решение

Задача 35176  (#04.031)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Найдите число нулей, на которое оканчивается число  11100 – 1.

Прислать комментарий     Решение

Задача 60658  (#04.032)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Уравнения в целых числах ]
[ Целочисленные треугольники ]
Сложность: 3
Классы: 8,9,10

Сколько имеется прямоугольных треугольников, длины сторон которых выражены целыми числами, если один из катетов этих треугольников равен 15?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .