ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 559]      



Задача 30613  (#027)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3-
Классы: 7,8

Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.

Прислать комментарий     Решение

Задача 30614  (#028)

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Предпоследняя цифра квадрата натурального числа – нечётная. Докажите, что его последняя цифра – 6.

Прислать комментарий     Решение

Задача 78692  (#029)

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Прислать комментарий     Решение

Задача 30616  (#030)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 8,9

Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр.

Прислать комментарий     Решение

Задача 30617  (#031)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

Докажите, что любое натуральное число сравнимо с суммой своих цифр по модулю
  а) 3;   б) 9.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .