ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал:

— Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение.

Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса!

Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении?

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 30410  (#03.001)

Темы:   [ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Докажите, что существует бесконечно много простых чисел.

Прислать комментарий     Решение

Задача 60454  (#03.002)

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

Найдите все простые числа, которые отличаются на 17.

Прислать комментарий     Решение

Задача 108743  (#03.003)

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

Прислать комментарий     Решение

Задача 60456  (#03.004)

Темы:   [ Простые числа и их свойства ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 8,9

Пусть  n > 2.  Докажите, что между n и n! есть по крайней мере одно простое число.

Прислать комментарий     Решение

Задача 60457  (#03.005)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Найдите все простые числа p и q, для которых выполняется равенство  p² – 2q² = 1.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .