Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 644]
|
|
Сложность: 3+ Классы: 7,8,9
|
Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
1) Каждая команда сыграла с каждой ровно по одному разу.
2) Каждая команда чередовала свои игры – то на плохой стороне, то
на хорошей стороне двора.
а) Удастся ли это сделать, если в турнире принимают участие
10 команд?
б) Можно ли при этом составить расписание так, чтобы
каждый день каждая команда играла ровно одну игру?
а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило
пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь
проводов разного цвета?
Найдите натуральное число, большее единицы, которое встречается в треугольнике Паскаля
а) больше трёх раз.
б) больше четырёх раз.
|
|
Сложность: 3+ Классы: 6,7,8
|
На доске написаны числа
а) 1, 2. 3, ..., 1997, 1998;
б) 1, 2, 3, ..., 1998, 1999;
в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?
|
|
Сложность: 3+ Классы: 7,8,9
|
См. задачу 73546 а).
Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 644]