ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости N квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.

Задание

Напишите программу MATCHES, которая по количеству квадратов N, которые необходимо составить, находит минимальное необходимое для этого количество спичек.

Входные данные

Единственная строка входного файла MATCHES.DAT содержит одно целое число N (1≤N≤109).

Выходные данные

Единственная строка выходного файла MATCHES.SOL должна содержать одно целое число - минимальное количество спичек требуемых для составления заданного количества квадратов.

Пример входных и выходных данных

MATCHES.DAT

MATCHES.SOL

4

12

Вниз   Решение


По окружности, сделанной из проволоки, двигаются бусинки с одинаковой угловой скоростью, некоторые - по часовой стрелке, некоторые - против. При столкновении две бусинки разлетаются в разные стороны с прежними скоростями. Докажите, что в некоторый момент начальное расположение бусинок повторится.

ВверхВниз   Решение


В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

Вверх   Решение

Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 6702]      



Задача 53262

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC .
Прислать комментарий     Решение


Задача 53294

Темы:   [ Площадь круга, сектора и сегмента ]
[ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Даны два одинаковых пересекающихся круга. Отношение расстояния между их центрами к радиусу равно 2m . Третий круг касается внешним образом первых двух и их общей касательной. Найдите отношение площади общей части первых двух кругов к площади третьего круга.
Прислать комментарий     Решение


Задача 53303

Темы:   [ Угол между касательной и хордой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты BB1 и CC1.
Докажите, что касательная в точке A к описанной окружности параллельна прямой B1C1, а  B1C1OA  (O – центр описанной окружности).

Прислать комментарий     Решение

Задача 53321

Тема:   [ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведённые к основанию, лежат на одной прямой.

Прислать комментарий     Решение

Задача 53324

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.

Прислать комментарий     Решение

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .