Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?

Вниз   Решение


В правильной треугольной пирамиде SABC ( S – вершина) точки D и E являются серединами рёбер AC и BC соответственно. Через точку E проведена плоскость β , пересекающая рёбра AB и SB и удалённая от точек D и B на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость делит ребро SB , если BC=4 , SC=3 .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



Задача 60385  (#02.051)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 8

У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?

Прислать комментарий     Решение

Задача 60388  (#02.054)

 [Бином Ньютона]
Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 8,9,10,11

Докажите справедливость формулы  

Прислать комментарий     Решение

Задача 60389  (#02.055)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Рациональные и иррациональные числа ]
Сложность: 3
Классы: 9,10,11

Сколько рациональных слагаемых содержится в разложении

а) ( + )100;

б) ( + )300?

Прислать комментарий     Решение

Задача 60390  (#02.056)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

Прислать комментарий     Решение

Задача 60391  (#02.057)

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
[ Правило произведения ]
[ Произвольные многоугольники ]
Сложность: 2+
Классы: 8,9

Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .