|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Плоскость раскрашена в два цвета, причем каждый цвет использован. а) Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 2006 м. б) Докажите, что найдутся две точки разных цветов, расстояние между которыми также равно 2006 м. а) Из 19 шаров 2 радиоактивны. Про любую кучку шаров за одну проверку можно узнать, имеется ли в ней хотя бы один радиоактивный шар (но нельзя узнать, сколько их). Доказать, что за 8 проверок всегда можно выделить оба радиоактивных шара. б) Из 11 шаров два радиоактивны. Доказать, что менее чем за 7 проверок нельзя гарантировать нахождение обоих радиоактивных шаров, |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559]
Докажите, что n³ – n делится на 24 при любом нечётном n.
а) Докажите, что p² – 1 делится на 24, если p – простое число и p > 3.
Натуральные числа x, y, z таковы, что x² + y² = z². Докажите, что хотя бы одно из этих чисел делится на 3.
a и b – натуральные числа, причём число a² + b² делится на 21. Докажите, что оно делится и на 441.
a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 559] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|