ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости даны n красных и n синих точек,
никакие три из которых не лежат на одной прямой. Докажите,
что можно провести n отрезков с разноцветными концами, не имеющих
общих точек.
В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A. Постройте треугольник ABC, зная три
точки A', B', C', симметричные точке пересечения высот
треугольника относительно сторон BC, CA, AB (оба
треугольника остроугольные).
|
Страница: << 1 2 [Всего задач: 8]
Сколько сторон может иметь выпуклый многоугольник,
все диагонали которого имеют одинаковую длину?
На плоскости даны n красных и n синих точек,
никакие три из которых не лежат на одной прямой. Докажите,
что можно провести n отрезков с разноцветными концами, не имеющих
общих точек.
Пусть дан выпуклый (2n + 1)-угольник
A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с
вершинами в его вершинах наибольшую длину имеет
ломаная
A1A2A3...A2n + 1A1.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке